Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.321
Filtrar
1.
Clin Exp Pharmacol Physiol ; 51(6): e13866, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38719209

RESUMO

Staphylococcus aureus (S. aureus) pneumonia has become an increasingly important public health problem. Recent evidence suggests that epigenetic modifications are critical in the host immune defence against pathogen infection. In this study, we found that S. aureus infection induces the expression of histone deacetylase 6 (HDAC6) in a dose-dependent manner. Furthermore, by using a S. aureus pneumonia mouse model, we showed that the HDAC6 inhibitor, tubastatin A, demonstrates a protective effect in S. aureus pneumonia, decreasing the mortality and destruction of lung architecture, reducing the bacterial burden in the lungs and inhibiting inflammatory responses. Mechanistic studies in primary bone marrow-derived macrophages demonstrated that the HDAC6 inhibitors, tubastatin A and tubacin, reduced the intracellular bacterial load by promoting bacterial clearance rather than regulating phagocytosis. Finally, N-acetyl-L- cysteine, a widely used reactive oxygen species (ROS) scavenger, antagonized ROS production and significantly inhibited tubastatin A-induced S. aureus clearance. These findings demonstrate that HDAC6 inhibitors promote the bactericidal activity of macrophages by inducing ROS, an important host factor for S. aureus clearance and production. Our study identified HDAC6 as a suitable epigenetic modification target for preventing S. aureus infection, and tubastatin A as a useful compound in treating S. aureus pneumonia.


Assuntos
Desacetilase 6 de Histona , Inibidores de Histona Desacetilases , Macrófagos , Espécies Reativas de Oxigênio , Staphylococcus aureus , Animais , Desacetilase 6 de Histona/antagonistas & inibidores , Desacetilase 6 de Histona/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Staphylococcus aureus/efeitos dos fármacos , Camundongos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/microbiologia , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Pneumonia Estafilocócica/tratamento farmacológico , Pneumonia Estafilocócica/microbiologia , Pneumonia Estafilocócica/metabolismo , Indóis/farmacologia , Camundongos Endogâmicos C57BL , Fagocitose/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Pulmão/microbiologia , Pulmão/metabolismo , Pulmão/patologia
2.
J Cell Mol Med ; 28(9): e18342, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38693852

RESUMO

Urothelial carcinoma (UC) urgently requires new therapeutic options. Histone deacetylases (HDAC) are frequently dysregulated in UC and constitute interesting targets for the development of alternative therapy options. Thus, we investigated the effect of the second generation HDAC inhibitor (HDACi) quisinostat in five UC cell lines (UCC) and two normal control cell lines in comparison to romidepsin, a well characterized HDACi which was previously shown to induce cell death and cell cycle arrest. In UCC, quisinostat led to cell cycle alterations, cell death induction and DNA damage, but was well tolerated by normal cells. Combinations of quisinostat with cisplatin or the PARP inhibitor talazoparib led to decrease in cell viability and significant synergistic effect in five UCCs and platinum-resistant sublines allowing dose reduction. Further analyses in UM-UC-3 and J82 at low dose ratio revealed that the mechanisms included cell cycle disturbance, apoptosis induction and DNA damage. These combinations appeared to be well tolerated in normal cells. In conclusion, our results suggest new promising combination regimes for treatment of UC, also in the cisplatin-resistant setting.


Assuntos
Apoptose , Inibidores de Histona Desacetilases , Inibidores de Poli(ADP-Ribose) Polimerases , Neoplasias da Bexiga Urinária , Humanos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/farmacologia , Dano ao DNA/efeitos dos fármacos , Sinergismo Farmacológico , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Ácidos Hidroxâmicos/farmacologia , Ácidos Hidroxâmicos/uso terapêutico , Ftalazinas/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias Urológicas/tratamento farmacológico , Neoplasias Urológicas/patologia
3.
Daru ; 32(1): 263-278, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38683491

RESUMO

BACKGROUND: Aberrant expression of histone deacetylases (HDACs) and ribonucleotide reductase (RR) enzymes are commonly observed in various cancers. Researchers are focusing on these enzymes in cancer studies with the aim of developing effective chemotherapeutic drugs for cancer treatment. Targeting both HDAC and RR simultaneously with a dual HDAC/RR inhibitor has exhibited enhanced effectiveness compared to monotherapy in cancer treatment, making it a promising strategy. OBJECTIVES: The objective of the study is to synthesize and assess the anti-cancer properties of a 1,10-phenanthroline-based hydroxamate derivative, characterizing it as a novel dual HDAC/RR inhibitor. METHODS: The N1-hydroxy-N8-(1,10-phenanthrolin-5-yl)octanediamide (PA), a 1,10-phenanthroline-based hydroxamate derivative, was synthesized and structurally characterized. The compound was subjected to in vitro assessments of its anti-cancer, HDAC, and RR inhibitory activities. In silico docking and molecular dynamics simulations were further studied to explore its interactions with HDACs and RRM2. RESULTS: The structurally confirmed PA exhibited antiproliferative activity in SiHa cells with an IC50 of 16.43 µM. It displayed potent inhibitory activity against HDAC and RR with IC50 values of 10.80 µM and 9.34 µM, respectively. Co-inhibition of HDAC and RR resulted in apoptosis-induced cell death in SiHa cells, mediated by the accumulation of reactive oxygen species (ROS). In silico docking studies demonstrated that PA can effectively bind to the active sites of HDAC isoforms and RRM2. Furthermore, PA demonstrated a more favorable interaction with HDAC7, displaying a docking score of -9.633 kcal/mol, as compared to the standard HDAC inhibitor suberoylanilide hydroxamic acid (SAHA), which exhibited a docking score of -8.244 kcal/mol against HDAC7. CONCLUSION: The present study emphasizes the prospect of designing a potential 1,10-phenanthroline hydroxamic acid derivative as a novel dual HDAC and RR-inhibiting anti-cancer molecule.


Assuntos
Antineoplásicos , Proliferação de Células , Inibidores de Histona Desacetilases , Ácidos Hidroxâmicos , Simulação de Acoplamento Molecular , Fenantrolinas , Humanos , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Ácidos Hidroxâmicos/química , Ácidos Hidroxâmicos/farmacologia , Fenantrolinas/química , Fenantrolinas/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Simulação de Dinâmica Molecular , Histona Desacetilases/metabolismo , Histona Desacetilases/química , Ribonucleotídeo Redutases/antagonistas & inibidores , Ribonucleotídeo Redutases/química , Apoptose/efeitos dos fármacos
4.
Cell Mol Biol (Noisy-le-grand) ; 70(4): 231-236, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38678601

RESUMO

Epidural fibrosis (EF) is a chronic, progressive and severe disease. Histone deacetylase 6 (HDAC6) regulates biological signals and cell activities by deacetylating lysine residues and participates in TGF-ß-induced epithelial-mesenchymal transition (EMT). Nevertheless, the effect and mechanism of HDAC6 in EF remain unclear. To investigate the effect and mechanism of HDAC6 inhibition on repressing epidural fibrosis. HDAC6 expression and α-smooth muscle actin (α-SMA) in normal human tissue and human EF tissue were assessed by quantitative real-time PCR (qRT-PCR) and western blotting. Human fibroblasts were treated with TGF-ß ± HDAC6 inhibitors (Tubastatin) and fibrotic markers including collagen I, collagen III, α-SMA and fibronectin were assessed using western blotting. Then TGFß1 receptor (TGFß1-R), PI3K and Akt were analyzed using qRT-PCR and western blotting. Rats were undergone laminectomy± Tubastatin (intraperitoneally injection; daily for 7 days) and epidural scar extracellular matrix (ECM) expression was gauged using immunoblots. Increasing HDAC6 expression was associated with α-SMA enrichment. Tubastatin remarkably restrained TGF-ß-induced level of collagen and ECM deposition in human fibroblasts, and the discovery was accompanied by decreased PI3K and Akt phosphorylation. Moreover, Tubastatin also inhibited TGF-ß-mediated HIF-1α and VEGF expression. In the epidural fibrosis model, we found that Tubastatin weakened scar hyperplasia and collagen deposition, and effectively inhibited the process of epidural fibrosis. These results indicated that Tubastatin inhibited HDAC6 expression and decreased TGF-ß/ PI3K/ Akt pathway that promotes collagen and ECM deposition and VEGF release, leading reduction of myofibroblast activation. Hence, Tubastatin ameliorated epidural fibrosis development.


Assuntos
Fibroblastos , Fibrose , Desacetilase 6 de Histona , Ácidos Hidroxâmicos , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Ratos Sprague-Dawley , Transdução de Sinais , Fator de Crescimento Transformador beta , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Desacetilase 6 de Histona/metabolismo , Desacetilase 6 de Histona/antagonistas & inibidores , Animais , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Masculino , Ácidos Hidroxâmicos/farmacologia , Ratos , Matriz Extracelular/metabolismo , Matriz Extracelular/efeitos dos fármacos , Espaço Epidural/patologia , Espaço Epidural/efeitos dos fármacos , Indóis/farmacologia , Actinas/metabolismo
5.
Int J Mol Sci ; 25(7)2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38612894

RESUMO

With the ambition to identify novel chemical starting points that can be further optimized into small drug-like inhibitors of insulin-regulated aminopeptidase (IRAP) and serve as potential future cognitive enhancers in the clinic, we conducted an ultra-high-throughput screening campaign of a chemically diverse compound library of approximately 400,000 drug-like small molecules. Three biochemical and one biophysical assays were developed to enable large-scale screening and hit triaging. The screening funnel, designed to be compatible with high-density microplates, was established with two enzyme inhibition assays employing either fluorescent or absorbance readouts. As IRAP is a zinc-dependent enzyme, the remaining active compounds were further evaluated in the primary assay, albeit with the addition of zinc ions. Rescreening with zinc confirmed the inhibitory activity for most compounds, emphasizing a zinc-independent mechanism of action. Additionally, target engagement was confirmed using a complementary biophysical thermal shift assay where compounds causing positive/negative thermal shifts were considered genuine binders. Triaging based on biochemical activity, target engagement, and drug-likeness resulted in the selection of 50 qualified hits, of which the IC50 of 32 compounds was below 3.5 µM. Despite hydroxamic acid dominance, diverse chemotypes with biochemical activity and target engagement were discovered, including non-hydroxamic acid compounds. The most potent compound (QHL1) was resynthesized with a confirmed inhibitory IC50 of 320 nM. Amongst these compounds, 20 new compound structure classes were identified, providing many new starting points for the development of unique IRAP inhibitors. Detailed characterization and optimization of lead compounds, considering both hydroxamic acids and other diverse structures, are in progress for further exploration.


Assuntos
Aminopeptidases , Insulina , Ensaios de Triagem em Larga Escala , Insulina Regular Humana , Corantes , Ácidos Hidroxâmicos , Zinco
6.
Biochim Biophys Acta Gen Subj ; 1868(6): 130614, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38598971

RESUMO

BACKGROUND: Deregulation of cell death is a common characteristic of cancer, and resistance to this process often occurs in lung cancer. Understanding the molecular mechanisms underlying an aberrant cell death is important. Recent studies have emphasized the involvement of calmodulin-regulated spectrin-associated protein 3 (CAMSAP3) in lung cancer aggressiveness, its influence on cell death regulation remains largely unexplored. METHODS: CAMSAP3 was knockout in lung cancer cells using CRISPR-Cas9 system. Cell death and autophagy were evaluated using MTT and autophagic detection assays. Protein interactions were performed by proteomic analysis and immunoprecipitation. Protein expressions and their cytoplasmic localization were analyzed through immunoblotting and immunofluorescence techniques. RESULTS: This study reveals a significant correlation between low CAMSAP3 expression and poor overall survival rates in lung cancer patients. Proteomic analysis identified high mobility group box 1 (HMGB1) as a candidate interacting protein involved in the regulation of cell death. Treatment with trichostatin A (TSA), an inhibitor of histone deacetylases (HDACs) resulted in increased HMGB1 acetylation and its translocation to the cytoplasm and secretion, thereby inducing autophagic cell death. However, this process was diminished in CAMSAP3 knockout lung cancer cells. Mechanistically, immunoprecipitation indicated an interaction between CAMSAP3 and HMGB1, particularly with its acetylated form, in which this complex was elevated in the presence of TSA. CONCLUSIONS: CAMSAP3 is prerequisite for TSA-mediated autophagic cell death by interacting with cytoplasmic acetylated HMGB1 and enhancing its release. SIGNIFICANT: This finding provides molecular insights into the role of CAMSAP3 in regulating cell death, highlighting its potential as a therapeutic target for lung cancer treatment.


Assuntos
Proteína HMGB1 , Neoplasias Pulmonares , Humanos , Proteína HMGB1/metabolismo , Proteína HMGB1/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Acetilação , Autofagia , Linhagem Celular Tumoral , Morte Celular , Células A549 , Ácidos Hidroxâmicos/farmacologia
7.
Int J Mol Sci ; 25(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38673851

RESUMO

Neutrophil elastase (NE) is taken up by macrophages, retains intracellular protease activity, and induces a pro-inflammatory phenotype. However, the mechanism of NE-induced pro-inflammatory polarization of macrophages is not well understood. We hypothesized that intracellular NE degrades histone deacetylases (HDAC) and Sirtuins, disrupting the balance of lysine acetylation and deacetylation and resulting in nuclear to cytoplasmic translocation of a major alarmin, High Mobility Group Box 1 (HMGB1), a pro-inflammatory response in macrophages. Human blood monocytes were obtained from healthy donors or from subjects with cystic fibrosis (CF) or chronic obstructive pulmonary disease (COPD). Monocytes were differentiated into blood monocyte derived macrophages (BMDMs) in vitro. Human BMDMs were exposed to NE or control vehicle, and the abundance of HDACs and Sirtuins was determined by Western blotting of total cell lysates or nuclear extracts or determined by ELISA. HDAC, Sirtuin, and Histone acetyltransferase (HAT) activities were measured. NE degraded most HDACs and Sirtuin (Sirt)1, resulting in decreased HDAC and sirtuin activities, with minimal change in HAT activity. We then evaluated whether the NE-induced loss of Sirt activity or loss of HDAC activities would alter the cellular localization of HMGB1. NE treatment or treatment with Trichostatin A (TSA), a global HDAC inhibitor, both increased HMGB1 translocation from the nucleus to the cytoplasm, consistent with HMGB1 activation. NE significantly degraded Class I and II HDAC family members and Sirt 1, which shifted BMDMs to a pro-inflammatory phenotype.


Assuntos
Proteína HMGB1 , Histona Desacetilases , Ácidos Hidroxâmicos , Elastase de Leucócito , Macrófagos , Humanos , Proteína HMGB1/metabolismo , Histona Desacetilases/metabolismo , Macrófagos/metabolismo , Elastase de Leucócito/metabolismo , Sirtuína 1/metabolismo , Acetilação , Inibidores de Histona Desacetilases/farmacologia , Células Cultivadas , Doença Pulmonar Obstrutiva Crônica/metabolismo , Fibrose Cística/metabolismo , Proteólise , Monócitos/metabolismo , Histona Acetiltransferases/metabolismo
8.
Cells ; 13(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38667323

RESUMO

Bladder cancer aggressiveness is correlated with abnormal N-cadherin transmembrane glycoprotein expression. This protein is cleaved by the metalloprotease ADAM10 and the γ-secretase complex releasing a pro-angiogenic N-terminal fragment (NTF) and a proliferation-activating soluble C-terminal fragment (CTF2). Tetraspanin 15 (Tspan15) is identified as an ADAM10-interacting protein to induce selective N-cadherin cleavage. We first demonstrated, in invasive T24 bladder cancer cells, that N-cadherin was cleaved by ADAM10 generating NTF in the extracellular environment and leaving a membrane-anchored CTF1 fragment and that Tspan15 is required for ADAM10 to induce the selective N-cadherin cleavage. Targeting N-cadherin function in cancer is relevant to preventing tumor progression and metastases. For antitumor molecules to inhibit N-cadherin function, they should be complete and not cleaved. We first showed that the GW501516, an agonist of the nuclear receptor PPARß/δ, decreased Tspan15 and prevented N-cadherin cleavage thus decreasing NTF. Interestingly, the drug did not modify ADAM10 expression, which was important because it could limit side effects since ADAM10 cleaves numerous substrates. By targeting Tspan15 to block ADAM10 activity on N-cadherin, GW501516 could prevent NTF pro-tumoral effects and be a promising molecule to treat bladder cancer. More interestingly, it could optimize the effects of the N-cadherin antagonists those such as ADH-1 that target the N-cadherin ectodomain.


Assuntos
Proteína ADAM10 , Secretases da Proteína Precursora do Amiloide , Antígenos CD , Caderinas , Dipeptídeos , Ácidos Hidroxâmicos , Proteínas de Membrana , Tetraspaninas , Neoplasias da Bexiga Urinária , Humanos , Proteína ADAM10/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Caderinas/metabolismo , Linhagem Celular Tumoral , Proteínas de Membrana/metabolismo , Invasividade Neoplásica , Proteólise/efeitos dos fármacos , Tetraspaninas/metabolismo , Tetraspaninas/genética , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/genética
9.
Int J Mol Sci ; 25(8)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38674139

RESUMO

The role of metalloproteinases (MMPs) in hematological malignancies, like acute myeloid leukemia (AML), myelodysplastic neoplasms (MDS), and multiple myeloma (MM), is well-documented, and these pathologies remain with poor outcomes despite treatment advancements. In this study, we investigated the effects of batimastat (BB-94), an MMP inhibitor (MMPi), in single-administration and daily administration schemes in AML, MDS, and MM cell lines. We used four hematologic neoplasia cell lines: the HL-60 and NB-4 cells as AML models, the F36-P cells as an MDS model, and the H929 cells as a model of MM. We also tested batimastat toxicity in a normal human lymphocyte cell line (IMC cells). BB-94 decreases cell viability and density in a dose-, time-, administration-scheme-, and cell-line-dependent manner, with the AML cells displaying higher responses. The efficacy in inducing apoptosis and cell cycle arrests is dependent on the cell line (higher effects in AML cells), especially with lower daily doses, which may mitigate treatment toxicity. Furthermore, BB-94 activated apoptosis via caspases and ERK1/2 pathways. These findings highlight batimastat's therapeutic potential in hematological malignancies, with daily dosing emerging as a strategy to minimize adverse effects.


Assuntos
Apoptose , Neoplasias Hematológicas , Fenilalanina/análogos & derivados , Tiofenos , Humanos , Apoptose/efeitos dos fármacos , Neoplasias Hematológicas/tratamento farmacológico , Neoplasias Hematológicas/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Antineoplásicos/farmacologia , Citostáticos/farmacologia , Proliferação de Células/efeitos dos fármacos , Ácidos Hidroxâmicos/farmacologia , Ácidos Hidroxâmicos/uso terapêutico , Células HL-60 , Inibidores de Metaloproteinases de Matriz/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/patologia
10.
ACS Infect Dis ; 10(5): 1739-1752, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38647213

RESUMO

Reverse analogs of the phosphonohydroxamic acid antibiotic fosmidomycin are potent inhibitors of the nonmevalonate isoprenoid biosynthesis enzyme 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR, IspC) of Plasmodium falciparum. Some novel analogs with large phenylalkyl substituents at the hydroxamic acid nitrogen exhibit nanomolar PfDXR inhibition and potent in vitro growth inhibition of P. falciparum parasites coupled with good parasite selectivity. X-ray crystallographic studies demonstrated that the N-phenylpropyl substituent of the newly developed lead compound 13e is accommodated in a subpocket within the DXR catalytic domain but does not reach the NADPH binding pocket of the N-terminal domain. As shown for reverse carba and thia analogs, PfDXR selectively binds the S-enantiomer of the new lead compound. In addition, some representatives of the novel inhibitor subclass are nanomolar Escherichia coli DXR inhibitors, whereas the inhibition of Mycobacterium tuberculosis DXR is considerably weaker.


Assuntos
Aldose-Cetose Isomerases , Antimaláricos , Fosfomicina , Ácidos Hidroxâmicos , Complexos Multienzimáticos , Plasmodium falciparum , Fosfomicina/farmacologia , Fosfomicina/análogos & derivados , Fosfomicina/química , Aldose-Cetose Isomerases/antagonistas & inibidores , Aldose-Cetose Isomerases/metabolismo , Aldose-Cetose Isomerases/química , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/enzimologia , Ácidos Hidroxâmicos/farmacologia , Ácidos Hidroxâmicos/química , Antimaláricos/farmacologia , Antimaláricos/química , Complexos Multienzimáticos/antagonistas & inibidores , Complexos Multienzimáticos/metabolismo , Complexos Multienzimáticos/química , Cristalografia por Raios X , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química , Relação Estrutura-Atividade , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/enzimologia , Modelos Moleculares , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/enzimologia , Domínio Catalítico , Oxirredutases/antagonistas & inibidores , Oxirredutases/metabolismo
11.
J Med Chem ; 67(8): 6610-6623, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38598312

RESUMO

Inhibition of the biosynthesis of bacterial heptoses opens novel perspectives for antimicrobial therapies. The enzyme GmhA responsible for the first committed biosynthetic step catalyzes the conversion of sedoheptulose 7-phosphate into d-glycero-d-manno-heptose 7-phosphate and harbors a Zn2+ ion in the active site. A series of phosphoryl- and phosphonyl-substituted derivatives featuring a hydroxamate moiety were designed and prepared from suitably protected ribose or hexose derivatives. High-resolution crystal structures of GmhA complexed to two N-formyl hydroxamate inhibitors confirmed the binding interactions to a central Zn2+ ion coordination site. Some of these compounds were found to be nanomolar inhibitors of GmhA. While devoid of HepG2 cytotoxicity and antibacterial activity of their own, they demonstrated in vitro lipopolysaccharide heptosylation inhibition in Enterobacteriaceae as well as the potentiation of erythromycin and rifampicin in a wild-type Escherichia coli strain. These inhibitors pave the way for a novel treatment of Gram-negative infections.


Assuntos
Antibacterianos , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Humanos , Bactérias Gram-Negativas/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Relação Estrutura-Atividade , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Cristalografia por Raios X , Sinergismo Farmacológico , Células Hep G2 , Modelos Moleculares , Ácidos Hidroxâmicos/química , Ácidos Hidroxâmicos/farmacologia , Ácidos Hidroxâmicos/síntese química , Zinco/química
12.
ESMO Open ; 9(4): 102971, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38518549

RESUMO

BACKGROUND: Most oesophagogastric adenocarcinomas (OGAs) and colorectal cancers (CRCs) are mismatch repair proficient (MMRp), responding poorly to immune checkpoint inhibition. We evaluated the safety and efficacy of domatinostat (histone deacetylase inhibitor) plus avelumab (anti-PD-L1 antibody) in patients with previously treated inoperable, advanced/metastatic MMRp OGA and CRC. PATIENTS AND METHODS: Eligible patients were evaluated in a multicentre, open-label dose escalation/dose expansion phase II trial. In the escalation phase, patients received escalating doses of domatinostat [100 mg once daily (OD), 200 mg OD, 200 mg twice daily (BD)] orally for 14 days followed by continuous dosing plus avelumab 10 mg/kg administered intravenously 2-weekly (2qw) to determine the recommended phase II dose (RP2D). The trial expansion phase evaluated the best objective response rate (ORR) during 6 months by RECIST version 1.1 using a Simon two-stage optimal design with 2/9 and 1/10 responses required to proceed to stage 2 in the OGA and CRC cohorts, respectively. RESULTS: Patients (n = 40) were registered between February 2019 and October 2021. Patients in the dose escalation phase (n = 12) were evaluated to confirm the RP2D of domatinostat 200 mg BD plus avelumab 10 mg/kg. No dose-limiting toxicities were observed. Twenty-one patients were treated at the RP2D, 19 (9 OGA and 10 CRC) were assessable for the best ORR; 2 patients with CRC did not receive combination treatment and were not assessable for the primary endpoint analysis. Six patients were evaluated in the dose escalation and expansion phases. In the OGA cohort, the best ORR was 22.2% (95% one-sided confidence interval lower bound 4.1) and the median duration of disease control was 11.3 months (range 9.9-12.7 months). No responses were observed in the CRC cohort. No treatment-related grade 3-4 adverse events were reported at the RP2D. CONCLUSIONS: Responses in the OGA cohort met the criteria to expand to stage 2 of recruitment with an acceptable safety profile. There was insufficient signal in the CRC cohort to progress to stage 2. TRIAL REGISTRATION: NCT03812796 (registered 23rd January 2019).


Assuntos
Adenocarcinoma , Anticorpos Monoclonais Humanizados , Neoplasias Colorretais , Neoplasias Esofágicas , Humanos , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais Humanizados/administração & dosagem , Masculino , Feminino , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Pessoa de Meia-Idade , Idoso , Adenocarcinoma/tratamento farmacológico , Neoplasias Esofágicas/tratamento farmacológico , Adulto , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Reparo de Erro de Pareamento de DNA , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia , Idoso de 80 Anos ou mais , Ácidos Hidroxâmicos/uso terapêutico , Ácidos Hidroxâmicos/farmacologia , Ácidos Hidroxâmicos/administração & dosagem
13.
J Infect Public Health ; 17(4): 669-675, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38447323

RESUMO

BACKGROUND: This study presents a comprehensive genomic analysis of NDM and OXA-48-producing Klebsiella pneumoniae in the Western region of Saudi Arabia, traversed by tens of millions of Muslims from various countries annually. This significant influx of visitors invariably leads to the spread and diversity of MDR bacteria. METHODS: Genome sequencing was performed using MiSeq system of 29 CPKP isolates that were NDM and OXA-48-positive isolated from nosocomial infections and demonstrated resistance to most antibiotics, including carbapenems. RESULTS: WGS analysis showed that 12 (41.3%) isolates co-harbored blaOXA-48,blaCTX-M-15 and blaNDM genes. Notably, 16 (55.1%) isolates were identified as high-risk clone ST14, with 50% of these isolates co-harbored blaOXA-48, blaNDM and blaCTX-M-15 genes. All ST14 isolates were identified as capsular genotype KL2 and O1/O2v1 antigen with yersiniabactin locus ypt 14 carried by ICEKp5. The two isolates were identified as ST2096/KL64 hypervirulent K. pneumoniae (hvKp) clone harboring several virulence factors, including the regulator of the mucoid phenotype rmpA2 and aerobactin (iuc-1). Interestingly, two of the hvKp ST383/KL30 isolates were resistant to all tested antimicrobials except colistin and tigecycline, and simultaneously carried numerous ESBLs and carbapenemase genes. These isolates also harbor several virulence factors such as rmpA1, rmpA2, carried on KpVP-1, and aerobactin (iuc-1). CONCLUSION: this study provides insights into the spread and prevalence of high-risk clones of CPKP in the Western region of Saudi Arabia. The ST14 high-risk clone appears to be the predominant CPKP clone in this region, posing a significant threat to public health. This study also reports the presence of two globally disseminated hypervirulent K. pneumoniae (hvKp) clones, namely ST2096 and ST383. Therefore, it is essential to improve surveillance and implement strict infection control measures in this region, which receives a substantial number of visitors to effectively monitor and reduce the spread of high-risk clones of antimicrobial-resistant bacteria, including CPKP.


Assuntos
Ácidos Hidroxâmicos , Infecções por Klebsiella , Klebsiella pneumoniae , Humanos , Infecções por Klebsiella/epidemiologia , Infecções por Klebsiella/microbiologia , Arábia Saudita/epidemiologia , beta-Lactamases/genética , beta-Lactamases/farmacologia , Antibacterianos/farmacologia , Fatores de Virulência/genética , Genômica , Testes de Sensibilidade Microbiana
14.
Biomed Pharmacother ; 173: 116374, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38447451

RESUMO

Here we present the generation and characterization of patient-derived organoids (PDOs) from colorectal cancer patients. PDOs derived from two patients with TP53 mutations were tested with two different HDAC inhibitors (SAHA and NKL54). Cell death induction, transcriptome, and chromatin accessibility changes were analyzed. HDACIs promote the upregulation of low expressed genes and the downregulation of highly expressed genes. A similar differential effect is observed at the level of chromatin accessibility. Only SAHA is a potent inducer of cell death, which is characterized by the upregulation of BH3-only genes BIK and BMF. Up-regulation of BIK is associated with increased accessibility in an intronic region that has enhancer properties. SAHA, but not NKL54, also causes downregulation of BCL2L1 and decreases chromatin accessibility in three distinct regions of the BCL2L1 locus. Both inhibitors upregulate the expression of innate immunity genes and members of the MHC family. In summary, our exploratory study indicates a mechanism of action for SAHA and demonstrate the low efficacy of NKL54 as a single agent for apoptosis induction, using two PDOs. These observations need to be validated in a larger cohort of PDOs.


Assuntos
Neoplasias do Colo , Inibidores de Histona Desacetilases , Humanos , Inibidores de Histona Desacetilases/farmacologia , Cromatina/genética , Ácidos Hidroxâmicos/farmacologia , Apoptose/genética , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Linhagem Celular Tumoral , Proteína Supressora de Tumor p53/genética
15.
Tomography ; 10(3): 428-443, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38535775

RESUMO

Current diagnostic and therapeutic approaches for gliomas have limitations hindering survival outcomes. We propose spectroscopic magnetic resonance imaging as an adjunct to standard MRI to bridge these gaps. Spectroscopic MRI is a volumetric MRI technique capable of identifying tumor infiltration based on its elevated choline (Cho) and decreased N-acetylaspartate (NAA). We present the clinical translatability of spectroscopic imaging with a Cho/NAA ≥ 5x threshold for delineating a biopsy target in a patient diagnosed with non-enhancing glioma. Then, we describe the relationship between the undertreated tumor detected with metabolite imaging and overall survival (OS) from a pilot study of newly diagnosed GBM patients treated with belinostat and chemoradiation. Each cohort (control and belinostat) were split into subgroups using the median difference between pre-radiotherapy Cho/NAA ≥ 2x and the treated T1-weighted contrast-enhanced (T1w-CE) volume. We used the Kaplan-Meier estimator to calculate median OS for each subgroup. The median OS was 14.4 months when the difference between Cho/NAA ≥ 2x and T1w-CE volumes was higher than the median compared with 34.3 months when this difference was lower than the median. The T1w-CE volumes were similar in both subgroups. We find that patients who had lower volumes of undertreated tumors detected via spectroscopy had better survival outcomes.


Assuntos
Glioblastoma , Glioma , Ácidos Hidroxâmicos , Sulfonamidas , Humanos , Projetos Piloto , Análise Espectral , Biópsia , Imageamento por Ressonância Magnética , Colina
16.
FASEB J ; 38(5): e23512, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38430220

RESUMO

The robust integrity of the retinal pigment epithelium (RPE), which contributes to the outer brain retina barrier (oBRB), is compromised in several retinal degenerative and vascular disorders, including diabetic macular edema (DME). This study evaluates the role of a new generation of histone deacetylase inhibitor (HDACi), ITF2357, in regulating outer blood-retinal barrier function and investigates the underlying mechanism of action in inhibiting TNFα-induced damage to RPE integrity. Using the immortalized RPE cell line (ARPE-19), ITF2357 was found to be non-toxic between 50 nM and 5 µM concentrations. When applied as a pre-treatment in conjunction with an inflammatory cytokine, TNFα, the HDACi was safe and effective in preventing epithelial permeability by fortifying tight junction (ZO-1, -2, -3, occludin, claudin-1, -2, -3, -5, -19) and adherens junction (E-cadherin, Nectin-1) protein expression post-TNFα stress. Mechanistically, ITF2357 depicted a late action at 24 h via attenuating IKK, IκBα, and p65 phosphorylation and ameliorated the expression of IL-1ß, IL-6, and MCP-1. Also, ITF2357 delayed IκBα synthesis and turnover. The use of Bay 11-7082 and MG132 further uncovered a possible role for ITF2357 in non-canonical NF-κB activation. Overall, this study revealed the protection effects of ITF2357 by regulating the turnover of tight and adherens junction proteins and modulating NF-κB signaling pathway in the presence of an inflammatory stressor, making it a potential therapeutic application for retinal vascular diseases such as DME with compromised outer blood-retinal barrier.


Assuntos
Retinopatia Diabética , Ácidos Hidroxâmicos , Edema Macular , Humanos , NF-kappa B/metabolismo , Retinopatia Diabética/metabolismo , Inibidor de NF-kappaB alfa/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Edema Macular/metabolismo , Transdução de Sinais , Epitélio Pigmentado da Retina/metabolismo , Barreira Hematorretiniana/metabolismo , Junções Íntimas/metabolismo , Células Epiteliais/metabolismo , Pigmentos da Retina/metabolismo , Pigmentos da Retina/farmacologia , Pigmentos da Retina/uso terapêutico
17.
Drug Dev Res ; 85(2): e22172, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38488434

RESUMO

Epigenetic modifications play a significant role in cancer progression, making them potential targets for therapy. Histone deacetylase inhibitors have shown promise in inhibiting cancer cell growth, including in breast cancer (BC). In this research, we examined the potential of using suberoyl anilide hydroxamic acid (SAHA)-loaded ß-lg nanofibrils as a drug delivery system for triple-negative BC cell lines. We assessed their impact on cell cycle progression, apoptosis, levels of reactive oxygen species, and mitochondrial membrane potential in cancer cells. The combination of SAHA and ß-lg nanofibrils demonstrated enhanced efficacy in inhibiting cell growth, inducing cell cycle arrest, and promoting apoptosis (43.78%) compared to SAHA alone (40.09%). Moreover, it effectively targeted cancer cells without promoting drug resistance while using a low concentration of the nanofibrils. These findings underscore the promising potential of nanofibril-based drug delivery systems for BC treatment.


Assuntos
Antineoplásicos , Neoplasias da Mama , Humanos , Feminino , Inibidores de Histona Desacetilases/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Ácidos Hidroxâmicos/farmacologia , Vorinostat/farmacologia , Vorinostat/uso terapêutico , Ciclo Celular , Apoptose , Proliferação de Células , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
18.
Exp Parasitol ; 259: 108727, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38431113

RESUMO

Toxoplasmosis is a zoonosis that is a worldwide health problem, commonly affecting fetal development and immunodeficient patients. Treatment is carried out with a combination of pyrimethamine and sulfadiazine, which can cause cytopenia and intolerance and does not lead to a parasitological cure of the infection. Lysine deacetylases (KDACs), which remove an acetyl group from lysine residues in histone and non-histone proteins are found in the Toxoplasma gondii genome. Previous work showed the hydroxamate-type KDAC inhibitors Tubastatin A (TST) and Vorinostat (Suberoylanilide Hydroxamic Acid, SAHA) were effective against T. gondii. In the present study, the effects of three hydroxamates (KV-24, KV-30, KV-46), which were originally designed to inhibit human KDAC6, showed different effects against T. gondii. These compounds contain a heterocyclic cap group and a benzyl linker bearing the hydroxamic acid group in para-position. All compounds showed selective activity against T. gondii proliferation, inhibiting tachyzoite proliferation with IC50 values in a nanomolar range after 48h treatment. Microscopy analyses showed that after treatment, tachyzoites presented mislocalization of the apicoplast, disorganization of the inner membrane complex, and arrest in the completion of new daughter cells. The number of dividing cells with incomplete endodyogeny increased significantly after treatment, indicating the compounds can interfere in the late steps of cell division. The results obtained in this work that these new hydroxamates should be considered for future in vivo tests and the development of new compounds for treating toxoplasmosis.


Assuntos
Toxoplasma , Toxoplasmose , Humanos , Lisina/farmacologia , Pirimetamina/farmacologia , Pirimetamina/uso terapêutico , Ácidos Hidroxâmicos/farmacologia , Vorinostat/farmacologia
19.
Bioorg Chem ; 146: 107247, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38493635

RESUMO

The current investigation encompasses the structural planning, synthesis, and evaluation of the urease inhibitory activity of a series of molecular hybrids of hydroxamic acids and Michael acceptors, delineated from the structure of cinnamic acids. The synthesized compounds exhibited potent urease inhibitory effects, with IC50 values ranging from 3.8 to 12.8 µM. Kinetic experiments unveiled that the majority of the synthesized hybrids display characteristics of mixed inhibitors. Generally, derivatives containing electron-withdrawing groups on the aromatic ring demonstrate heightened activity, indicating that the increased electrophilicity of the beta carbon in the Michael Acceptor moiety positively influences the antiureolytic properties of this compounds class. Biophysical and theoretical investigations further corroborated the findings obtained from kinetic assays. These studies suggest that the hydroxamic acid core interacts with the urease active site, while the Michael acceptor moiety binds to one or more allosteric sites adjacent to the active site.


Assuntos
Ácidos Hidroxâmicos , Urease , Sítio Alostérico , Domínio Catalítico , Inibidores Enzimáticos/química , Ácidos Hidroxâmicos/química , Cinética , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Cinamatos/química
20.
Int Immunopharmacol ; 132: 111921, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38547770

RESUMO

Interleukin-1-beta (IL-1ß) one of the biomarkers for oral squamous cell carcinoma (OSCC), is upregulated in tumor-microenvironment (TME) and associated with poor patient survival. Thus, a novel modulator of IL-1ß would be of great therapeutic value for OSCC treatment. Here we report regulation of IL-1ß and TME by histone deacetylase-6 (HDAC6)-inhibitor in OSCC. We observed significant upregulation of HDAC6 in 4-nitroquniline (4-NQO)-induced OSCC in mice and 4-NQO & Lipopolysaccharide (LPS) stimulated OSCC and fibroblast cells. Tubastatin A (TSA)-attenuated the OSCC progression in mice as observed improvement in the histology over tongue and esophagus, with reduced tumor burden. TSA treatment to 4-NQO mice attenuated protein expression of HDAC6, pro-and-mature-IL-1ß and pro-and-cleaved-caspase-1 and ameliorated acetylated-tubulin. In support of our experimental work, human TCGA analysis revealed HDAC6 and IL-1ß were upregulated in the primary tumor, with different tumor stages and grades. We found TSA modulate TME, indicated by downregulation of CD11b+Gr1+-Myeloid-derived suppressor cells, CD11b+F4/80+CD206+ M2-macrophages and increase in CD11b+F4/80+MHCII+ M1-macrophages. TSA significantly reduced the gene expression of HDAC6, IL-1ß, Arginase-1 and iNOS in isolated splenic-MDSCs. FaDu-HTB-43 and NIH3T3 cells stimulated with LPS and 4-NQO exhibit higher IL-1ß levels in the supernatant. Interestingly, immunoblot analysis of the cell lysate, we observed that TSA does not alter the expression as well as activation of IL-1ß and caspase-1 but the acetylated-tubulin was found to be increased. Nocodazole pre-treatment proved that TSA inhibited the lysosomal exocytosis of IL-1ß through tubulin acetylation. In conclusion, HDAC6 inhibitors attenuated TME and cancer progression through the regulation of IL-1ß in OSCC.


Assuntos
Desacetilase 6 de Histona , Inibidores de Histona Desacetilases , Ácidos Hidroxâmicos , Indóis , Interleucina-1beta , Neoplasias Bucais , Microambiente Tumoral , Animais , Desacetilase 6 de Histona/antagonistas & inibidores , Desacetilase 6 de Histona/metabolismo , Interleucina-1beta/metabolismo , Humanos , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/patologia , Neoplasias Bucais/imunologia , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Camundongos , Ácidos Hidroxâmicos/farmacologia , Ácidos Hidroxâmicos/uso terapêutico , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/imunologia , Camundongos Endogâmicos C57BL , Linhagem Celular Tumoral , Progressão da Doença , Células Supressoras Mieloides/efeitos dos fármacos , Células Supressoras Mieloides/imunologia , Masculino , Tubulina (Proteína)/metabolismo , Lipopolissacarídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA